## —— ГЕОХИМИЯ —

УДК 552.63

## ТЕРМОБАРОМЕТРИЯ ОБЫКНОВЕННЫХ ХОНДРИТОВ

© 2006 г. – Н. Г. Зиновьева, П. Ю.Плечов, Н. П. Латышев, Л. Б. Грановский

Представлено академиком А.А. Маракушевым 20.10.2005 г.

Поступило 07.11.2005 г.

Обыкновенные хондриты являются наиболее распространенным типом метеоритов. Между тем их генетическая интерпретация, принятая в современной литературе и основанная на рассмотрении независимого друг от друга образования каплевидных силикатных хондр и камаситовой матрицы, находится в явном противоречии с результатами их петрографического и экспериментального изучения [1], свидетельствующего о совместном возникновении хондр и матрицы хондритов в результате развития железо-силикатной магматической несмесимости, определившей закономерные соотношения их состава (обусловленные правилом Прайора). Для хондритов типичны магматические структуры с нормальной магматической последовательностью кристаллизации силикатов Ol > Px > Cpx, аналогичной магматическим породам планет Земной группы с характерным разделением их на вулканические (I, с ярко выраженной зональностью минеральных зерен) и субвулканические (II, с однородными зернами минералов) стеклосодержащие породы, плутонические (III) со свойственным им формированием полностью раскристаллизованных пород с однородными составами минеральных зерен. Подавляющее большинство обыкновенных хондритов отличается относительной "свежестью", слабым наложением на них поздних гидротермальных преобразований (в отличие от углистых хондритов) и поэтому они отчетливо подразделяются по перечисленным магматическим фациям (I, II, III): группа H – Yamato(Y)-82133 I(3), Рагули II(3.8), Оханск II(4); группа L – Y-74417 I(3), Саратов II(4), Fucbin III(6), Бердянск III(6) и группа LL – Y-74160 III(7).

Эти представления расходятся с общепринятыми, связывающими многообразие петрологических типов обыкновенных хондритов с процессом так называемого термального метаморфизма. Ясность в дискуссию о происхождении обыкновенных хондритов может внести применение современных геотермометров и геобарометров для оценки *PT*-параметров формирования различных их типов. В настоящем сообщении условия образованияперечисленных выше хондритов оцениваются на основании пироксеновых равновесий, данные по которым приводятся в табл. 1.

Пироксеновая термометрия уже применялась для определения температуры образования LLхондритов. Для хондритов, соответствующих фации III, были получены температуры 900-1150°С на основании составов клинопироксенов и на 100-200°С ниже на основании составов ортопироксенов [9], для хондритов фаций I и II эти отличия еще более существенны. Нами [11] температуры кристаллизации обыкновенных хондритов всех химических групп определялись по нескольким геотермометрам [2, 6, 13, 14], основанным на распределении Са, Мg и Fe между ромбическим и моноклинным пироксенами, характеризуемым также на диаграмме рис. 1. Для оценки температуры кристаллизации хондр использовались составы орто- и клинопироксенов, являющихся, наряду с оливинами, наиболее распространенными минералами обыкновенных хондритов. Представительные анализы сосуществующих пироксенов приведены в табл. 1. Соотношение железистости пироксенов характеризуется диаграммой, рис. 2, причем все использованные для хондритов данные хорошо согласуются с диапазонами составов природных (земных) сосуществующих пироксенов.

Применяемые модели показали хорошую сходимость с экспериментальными данными (±50°С) и результатами, полученными по Ol-Cpx-геотермометру [8] для природных парагенезисов (±15°С). Разброс значений, определенных для одних и тех же парагенезисов метеоритов по различным моделям, лежит в пределах ±48°С. Температуры кристаллизации хондр обыкновенных хондритов фации III, рассчитанные по разным двупироксеновым геотермометрам [2, 6, 13, 14], варьируют незначительно (+48°C), а полученные по каждому из них (например, по [13], табл. 2) практически постоянны (Бердянск ±7°С; Fucbin ±19°С; Ү-74160 ±52°С). В отличие от них хондры обыкновенных хондритов I и II фаций кристаллизовались в широком диапазоне температур (I-938-1466°C; II – 890–1479°С, см. табл. 2). Температура кристаллизации хондритов фаций III хорошо согласу-

Московский государственный университет им. М.В. Ломоносова

| Компо-<br>нент    | Y-82133 H (I) |       | Y-74417 L (I) |       | Рагули Н (II) |       | Saratov L (II) |       | Fucbin L (III) |       | Y-74160 LL (III) |       |
|-------------------|---------------|-------|---------------|-------|---------------|-------|----------------|-------|----------------|-------|------------------|-------|
|                   | Срх           | Opx   | Срх           | Opx   | Срх           | Opx   | Срх            | Opx   | Срх            | Opx   | Срх              | Opx   |
| SiO <sub>2</sub>  | 49.17         | 58.27 | 52.56         | 58.97 | 53.51         | 55.60 | 53.85          | 52.44 | 54.42          | 55.64 | 53.38            | 53.59 |
| TiO <sub>2</sub>  | 1.20          | 0.20  | 0.53          | _     | 0.60          | 0.16  | 0.83           | -     | 0.47           | 0.07  | 0.41             | 0.22  |
| $Al_2O_3$         | 8.64          | 1.08  | 4.04          | 0.35  | 0.80          | _     | 4.05           | -     | 0.71           | 0.27  | 0.89             | 0.36  |
| $Cr_2O_3$         | 2.46          | 1.09  | 2.24          | 0.51  | 0.99          | 0.18  | -              | -     | 1.12           | 0.37  | 1.26             | 0.53  |
| FeO               | 0.82          | 2.16  | 0.50          | 2.53  | 3.62          | 10.72 | 5.64           | 14.64 | 4.52           | 13.78 | 6.55             | 16.43 |
| MnO               | 0.32          | 0.00  | 2.06          | -     | 0.22          | 0.47  | 0.45           | 0.31  | 0.18           | 0.38  | 0.38             | 0.50  |
| MgO               | 15.97         | 36.71 | 18.59         | 36.53 | 17.42         | 29.86 | 17.07          | 31.92 | 17.01          | 28.91 | 16.04            | 26.14 |
| CaO               | 20.97         | 0.49  | 19.04         | 0.50  | 22.39         | 2.99  | 16.86          | 0.14  | 20.89          | 0.58  | 20.38            | 2.20  |
| Na <sub>2</sub> O | 0.66          | _     | 0.43          | 0.43  | 0.45          | _     | 1.24           | 0.54  | 0.69           | _     | 0.71             | 0.03  |

Таблица 1. Составы сосуществующих пироксенов (Срх и Орх) обыкновенных хондритов различных фациальных типов (I, II, III)

Примечание. Прочерк содержание ниже предела обнаружения.

ется с температурой формирования равновесных хондритов химической группы LL, оцененных по составу клинопироксена [9], тогда как для хондритов I и II фаций верхняя граница диапазона кристаллизации хондр смещена вверх по сравнению с [9] на 150–200°С.

Полученные температуры кристаллизации различных фаций консолидации обыкновенных



**Рис. 1.** Вариации состава орто- и клинопироксена различных фаций консолидации H (2, 3), L (2, 4, 5) и LL (6) хондритов: 1, 2 – вулканической, 3, 4 – субвулканической, 5, 6 – плутонической, 7–12 – поля коннод, соединяющих сосуществующие орто- и клинопироксены хондритов Y-82133 H; Y-74417 L; Рагули H; Саратов L; Fucbin L + Бердянск L; Y-74160 LL + Uden LL, соответственно

хондритов хорошо коррелируются с температурами кристаллизации земных вулканических и плутонических пород. Стеклосодержащие хондриты (I и II), кристаллизовавшиеся в более высокотемпературных условиях, в широком диапазоне температуры, характеризуются более контрастной полифациальностью по сравнению с хондритами плутонической фации (III), в которых фиксируется более низкая относительно выдержанная температура (табл. 2, рис. 3).

Попытки оценить давление и выявить *РТ*условия формирования обыкновенных хондритов LL-группы по вхождению Al в клино- и Ca в ортопироксен предпринимались в работе [9], но не дали надежных результатов вследствие слишком



**Рис. 2.** Соотношение железистости равновесных орто- и клинопироксенов различных магматических фаций H-, L- и LL-хондритов (условные обозначения соответствуют *1–6* на рис. 1).

ДОКЛАДЫ АКАДЕМИИ НАУК том 408 № 6 2006

| Фэниа | Younput               | N  | Τ,        | °C      | Р, кбар   |         |  |
|-------|-----------------------|----|-----------|---------|-----------|---------|--|
| Фация | Хондрит               | 11 | интервал  | средняя | интервал  | среднее |  |
| Ι     | Ү-82133 Н             | 12 | 938–1466  | 1190    | 0–15.9    | 8.4     |  |
|       | Y-74417 L             | 11 | 1106–1307 | 1207    | 3.6–12.2  | 7.7     |  |
| II    | Рагули Н              | 11 | 890–1479  | 1193    | 0–13.7    | 6.0     |  |
|       | Рагули H, Ur-Jd Cpx   | 4  |           | 1000    | 63.7-81.6 | 70.1    |  |
|       | Саратов L             | 5  | 900-1203  | 1129    | 0–14.6    | 5.9     |  |
| III   | Бердянск L            | 6  | 985-1000  | 993     | 3.8–5.1   | 4.5     |  |
|       | Бердянск L, Ur-Jd Cpx | 8  |           | 1000    | 66.9–72.8 | 69.6    |  |
|       | Fucbin L              | 7  | 992-1030  | 1011    | 3.6-8.3   | 5.7     |  |
|       | Y-74160 LL            | 2  | 1000–1105 | 1053    | 3.1–5.0   | 4.0     |  |

**Таблица 2.** Результаты термобарометрического изучения обыкновенных хондритов различных фациальных типов (I, II, III)

Примечание. *N* – число проанализированных зерен. Температура рассчитана по двупироксеновому геотермометру [13]; Давление рассчитано по клинопироксеновому геобарометру [10]. Составы пироксеновых пар хондрита Y-74160 LLIII(7) взяты из [12].

низких содержаний Al и Ca в пироксенах. В настоящей работе давление формирования магматических парагенезисов каждой фации H-, L- и LLхондритов определялось по клинопироксеновому геобарометру [10]. Расчет давления по модели [10] основан на зависимости от давления параметров кристаллической решетки кристаллизующихся клинопироксенов (объема ячейки и объема полиэдра М1). Она меньше, чем более ранние модели, зависит от состава расплава и набора сосуществующих минералов. Правомочность применения этой модели для оценки давлений кристаллизации клинопироксенов хондритов подробно обсуждалась в работе [11], где было показано, что в интервале давлений от 0 до 18 кбар сходимость с экспериментальными данными составляет ±1.13 кбар, при максимальном отклонении 3.86 кбар, т.е. можно заведомо принять за значимые рассчитанные давления >5 кбар.

Средние значения давления (табл. 2), полученные по клинопироксеновому геобарометру [10] для разных фаций (I, II, III) обыкновенных хондритов химических групп H, L и LL, варьируют от 4 до 8.4 кбар, при этом давление, при котором кристаллизуются клинопироксены в равновесных хондритах фации III, варьирует в более узких пределах 3.1-8.3 кбар, чем в неравновесных хондритах фаций I и II, где оно меняется от 0 до 10.6 кбар. Кроме того, в хондритах фаций I и II обнаружены единичные зерна клинопироксена, кристаллизующегося при более высоких давлениях (до 16 кбар). В этом проявляется полифациальность стеклосодержащих хондритов, очаги которых более глубинны, чем реальные плутонические породы, представленные на диаграмме (рис. 3) хондритами Fucbin L(III), Бердянск L(III) и Y-74160 LL(III).

Таким образом, полученные данные однозначно указывают на кристаллизацию клинопироксенов изученных обыкновенных хондритов при давлениях и температурах (900–1500°С), свойственных магматическим породам. Наиболее типичен диапазон давлений от 0 до 10.6 кбар со спорадическим подъемом до 16 кбар.

Дополнительную информацию о давлении при формировании обыкновенных хондритов, помимо полученных данных, дает присутствие в хондритах I, II и III фаций протопироксена, сама возможность кристаллизации которого ограничивает давление величиной порядка 8 кбар [5]. Для хондритов плутонической фации протопироксе-



**Рис. 3.** Сводная диаграмма определения *РТ*-параметров кристаллизации обыкновенных хондритов: I – вулканических; II – субвулканических и III – плутонических.

ны менее характерны, что указывает на то, что давление при их образовании превышало 8 кбар.

В обыкновенных хондритах всех трех фаций содержатся реликтовые зерна со структурами распада [1, 15], кристаллизация которых предшествовала формированию силикатов, доминирующих в хондритах. Давление кристаллизации реликтовых зерен жадеит-юриитовых клинопироксенов, рассчитанное по клинопироксеновому барометру [10], достигает 82 кбар (см. табл. 2). Вторая разновидность реликтовых зерен - кремнезем-клинопироксеновые твердые растворы, впервые обнаруженные в обыкновенных хондритах [15], хорошо известны в высокобарных земных породах, где описаны их структуры распада [7]. Экспериментально эти твердые растворы синтезировались [3, 4] при давлениях 35-150 кбар. Находки реликтовых зерен высокобарных минералов свидетельствуют о том, что этапу кристаллизации хондритовых расплавов, зафиксированному в структуре хондритов, предшествовала высокобарная кристаллизация (>60 кбар).

Таким образом, результаты термобарометрического изучения обыкновенных хондритов являются важным подтверждением детально обоснованной в [1] теории двухстадийного формирования хондритов. Термобарометрические исследования зафиксировали как условия высокобарной кристаллизации (>60 кбар) на переходе от протопланетной стадии развития к собственно планетной, так и *PT*-условия кристаллизации на собственно планетной стадии, предшествовавшей распаду хондритовых планет на астероиды.

Работа выполнена при частичной финансовой поддержке РФФИ (грант 04-05-64880), программы

"Университеты России" и "Поддержка научных школ" (гранты УР.09.02.601/05, НШ–1301.2003.5 и 1645.2003.5).

## СПИСОК ЛИТЕРАТУРЫ

- 1. Маракушев А.А., Грановский Л.Б., Зиновьева Н.Г. и др. Космическая петрология. М.: Наука, 2003. 387 с.
- 2. Перчук Л.Л. // ДАН. 1977. Т. 233. № 3. С. 456–459.
- 3. Ханухова Л.Т., Жариков В.А., Ишбулатов Р.А. и др. // ДАН. 1976. Т. 229. № 1. С. 182–184.
- Angel R.J., Gasparik T., Ross N.L. et al. // Nature. 1988. V. 335. P. 156–158.
- 5. Gasparik T. // Amer. Miner. 1990. V. 75. P. 1080–1091.
- Kretz R. // Geochim. et cosmochim. acta. 1982. V. 46. P. 411–421.
- Liou J.G., Zhang R.Y., Ernst W.G. et al. // Rev. in miner. 1998. V. 37. P. 33–96.
- Loucks R.R. // Contribs Mineral. and Petrol. 1996. V. 125. P. 140–150.
- McSween H.Y., Patchen A.D. // Meteoritics. 1989. V. 24. P. 219–226.
- Nimis P. // Contribs. Mineral. and Petrol. 1999. V. 135. P. 62–74.
- 11. Pletchov P.Yu., Zinovieva N.G., Latyshev N.P. et al. // Lunar and Planet. Sci. 2005. V. 34. P. 1041.
- 12. *Takeda H., Huston T.J., Lipschutz E.* // Earth and Planet. Sci. Lett. 1984. V. 71. P. 329–339.
- 13. Wells P.R.A. // Contribs Mineral. and Petrol. 1977. V. 62. P. 129–139.
- 14. Wood B.J., Banno S. // Contribs Mineral. and Petrol. 1973. V.42, P. 109–124.
- 15. Zinovieva N.G., Mitreikina O.B., Granovsky L.B. // Antarct. Meteorol. 2002. № 27. P. 183–185.